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a b s t r a c t

Introduction: According to a World Health Organization (WHO) report, 17.3 million people

died from cardiovascular diseases (CVDs) in 2008, representing 30% of all global deaths, and

almost 23.6 million people will die from CVDs by 2030. CVDs remain the predominant cause

of mortality worldwide.

Aim: In this review, the authors discuss the current strategies and therapies targeting stem

cells in CVDs.

Material and methods: In this paper we present an overview of stem cell therapy for CVD and

discuss the challenges these three areas present for maximum optimization of the efficacy

of stem cell therapy for heart disease, and new strategies in progress.

Discussion: Various kinds of therapeutic methods have been studied to improve prognosis in

cardiovascular diseases. Stem cells comprise an enormous opportunity to rebuild damaged

tissues. Most of the application and clinical trials involve the various types of stem cells derived

mainly from bone marrow and others sources of mesenchymal stem cells. Early data from

these trials have produced mixed results often showing minor or transitory improvements.

Conclusions: The divergences are attributed to differences in cell preparations, the large

number of stem cell types under investigation in different clinical settings, timing, methods

of cell administration and characteristics of patients.
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1. Introduction

According to a World Health Organization (WHO) report, 17.3
million people died from cardiovascular diseases (CVDs) in
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2008, representing 30% of all global deaths, and almost 23.6
million people will die from CVDs by 2030.1 Although many
drugs and medical devices have been developed, the incidence
of CVDs remains high. The field of cardiac cell therapy has
emerged as a new alternative in this situation, and has made
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rapid progress. The use of stem cells to improve recovery of the
injured heart is an important emerging therapeutic strategy.

Stem cells comprise an enormous opportunity to rebuild
damaged tissues. To understand their functions, physiology
and action, cells are tested not only in vitro but also in vivo in
animal models. Stem cell therapy induces both therapeutic
and side effects; therefore, extensive evaluation of the side
effects is needed to decide if a treatment can be adopted in
medical practice. Stem cell transplantation in human patients
must ensure safety and therapeutic efficacy. Preclinical
studies with animal models provide strong evidence for
obtaining a relevant positive clinical outcome.

The main challenges of stem cell therapy for CVD are
improved identification, recruitment, and expansion of autol-
ogous stem cells; the identification of mobilizing and homing
agents that increase recruitment; and developmental strate-
gies to improve stem cell survival during the engraftment of
both endogenous and exogenous sources of stem cells.2 During
the past decade, multiple candidate cells have been proposed
for cardiac regeneration. Moreover, the first clinical trials
with cell-based therapies have been performed. At present,
it is believed that stem cell therapy could lead to cardiac
regeneration in various ways – differentiation of the adminis-
tered cells into all of the cellular constituents of the heart, the
release of paracrine factors, the stimulation of endogenous
repair by injected cells, or a combination of these mecha-
nisms.3 The most likely route of action seems to be the
paracrine influence, where the effectiveness of stem cells is
related to the secretion of soluble factors that contribute to
cardiac repair and regeneration. Moreover, cytokines and
growth factors can induce cytoprotection and neovasculariza-
tion. Additionally, as stem cells are released in a temporal and
spatial manner, they exert various effects depending on the
microenvironment after injury and may have an autocrine
impact on the biology of stem cells themselves. Moreover,
these stem cells may influence adjacent cells and exert their
actions via several mechanisms.3

A myocardial infarction (MI) is the ischemic necrosis of the
cardiac tissue and it is frequently triggered by severe coronary
stenosis. The decrease in myocytes produces abnormal left
ventricular (LV) remodeling, chamber dilatation and contrac-
tile dysfunction.4 In patients after MI delivering naturally
myogenic cells (i.e., skeletal myoblasts, cardiomyocytes, or
any progenitor cell driven down a muscle lineage) seems to be
a high priority. However, the formation of new myocardium
has been established for embryonic stem cells (ESCs). In turn,
bone marrow (BM) mononuclear cells (BMMCs) are an easily
accessible source of adult stem cells. For patients with chronic
ischemia, application cells with angiogenic potential, such
as BMMCs, endothelial progenitor cells (EPCs), vascular
progenitor cells or mesenchymal stem cells (MSCs), seem to
have more therapeutic potential.

2. Aim

In this paper we present an overview of stem cell therapy for
CVD and discuss the challenges these three areas present
for maximum optimization of the efficacy of stem cell therapy
for heart disease, and new strategies in progress. We also
discuss important questions that remain to be investigated to
ascertain a successful translation of current experimental
knowledge regarding cell therapy for myocardial repair/
replacement.

3. Material and methods

3.1. Stem cells in clinical study

3.1.1. The bone marrow as a source of cardiogenic cells
The inflammatory process after myocardial ischemia stimu-
lates the recruitment and homing to the cardiac the endoge-
nous BM derived cells (BMDCs). It is connected with the
mobilization a number of cytokines.4,5 Preclinical studies of
cell-based therapy with BMDCs showed impressive regenera-
tion of lost myocarium, improvement of cardiac function and
formation of new capillaries in both small and large animal
models.6 There are some early reports that BMDCs may
transdifferentiate into skeletal muscle, hepatocytes or cardi-
omyocytes.7,8 However, it is not completely known if improved
cardiac function after therapy with those cells was caused by
the paracrine theory of cardiac protection and regeneration.
This paracrine action includes secretion of cardioprotective
cytokines, angiogenic factors or factors which activate resi-
dent cardiac stem cells.9

After successful preclinical studies in animal models, the
rapid transition to the clinical use of BMDCs took place. A
significant contribution is the fact that BM can be easy
accessed, is renewable, and contains a mixture of autologous
cells with regenerative capacity. Much attention has been paid
to the mononuclear cell fraction, mainly due to the full array
of hematopoietic stem cells, MSCs, EPCs and side population
cells. All of these cell types were shown to improve cardiac
function if transplanted into infarcted myocardium in various
animal studies.6,10–13

The first human clinical trial with stem cells in an acute
myocardial infarction (AMI) patient was done using an
intracoronary infusion of autologous BM unfractionated
mononuclear cells. At 10 weeks after the stem cell transplan-
tation, the infarct area had been reduced from 24.6% to 15.7%
of LV circumference, while the ejection fraction, cardiac index
and stroke volume had increased by 20%–30%.14

Several randomized trials showed measurable improve-
ments that were comparable to established therapeutic
regimes. Nonrandomized, smaller-scale trials also produced
variable results, ranging from no significant changes in LV
ejection fraction (LVEF) to a significant improvement. The
meta-analysis of 18 randomized and non-randomized trials
involving AMI and chronic ischemic cardiomyopathy patients
found that transplantation of BMDSCs improved the LVEF by
5.40%, decreased infarct scar size by 5.49%, and lowered LV
end-systolic volume by 4.80 mL.15

Application of BMMCs caused improved LV contractility in
the infarct border zone and global LVEF by 6% in the BOOST
trial,16 2.8% in the REPIR-AMI trial,17 5% in the FINCELL trial,18

and 3% in the REGENT trial.19 A high volume of this factor was
obtained in a non-randomized trial undertaken by Srimaha-
chota and co-workers20 – 7%. By contrast, in the ASTAMI trial21

no significant effects on LVEF, LV volumes, or infarct size were
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observed after BMMCs transplantation. Similarly, in a trial
undertaken by Janssens charge,22 they observed only a
reduction in the infarct volume and an improvement in
regional contractility in the greatest transmural infarct.
Intracoronary transfer of autologous BM cells within 24 h of
optimum reperfusion therapy does not augment recovery of
global LV function after MI, but could favorably affect infarct
remodeling. In the HEBE trial, intracoronary infusion of
mononuclear cells from BM and peripheral blood did not
improve regional or global systolic myocardial function.23

Some trials have been completed in patients with advanced
chronic myocardial ischemia, with no options for revasculari-
zation. BMMCs improved cardiac function in the PROTECT-
CAD trial,24 where improvements were observed of New York
Heart Association (NYHA) functional class, exercise time,
LVEF, wall thickening, and stress-induced perfusion defects.
Similarly, in studies by van Ramshorst et al.,25 improvement in
LVEF, myocardial perfusion, angina functional class, exercise
capacity and quality of life were observed. Losordo et al.26

observed improved of angina frequency and exercise time,
however no clear effects on myocardial perfusion were noted.

Penn et al.27 used MultiStem in a patient after AMI.
MultiStem is an allogeneic BM-derived adherent adult stem
cell product that has shown efficacy in preclinical models of
AMI. This trial showed MultiStem delivered via trans arterial
adventitia using a microsyringe catheter was safe with
improvement of cardiac function in a dose-dependent
manner.

The randomized clinical trial with 204 patients with AMI
showed that intracoronary delivery of BM cells (at 3–7 days
post-reperfusion therapy) decreased the incidence of MI and
death, or revascularization, at a 12-month follow-up when
compared with placebo.17

Now after more than 10 years of clinical experience, the use
of cells from certain sources remains highly controversial. All
that can be said is that the therapy is safe, but its clinical
efficacy seems to be limited, as suggested by the latest meta-
analyses. There is no meaningful reduction of cardiac injury,
and, at best, there is a modest improvement of LVEF in the
range of 3%.28 New approaches to improve cell survival and
preserve paracrine function are currently being explored.29,30

3.1.2. Mesenchymal stem cells
MSCs are adult stem cells traditionally found in the BM. They are
multipotent stromal cells that can differentiate into a variety of
cell types, including cardiomyocytes, if stimulated properly
in vitro, and represent approximately 0.001%–0.010% of BM
nucleated cells.31,32 The data from experiments in animal
models of acute and chronic ischemic cardiomyopathy indicate
the cardiomyogenic and angiogenic differentiation capacity of
MSCs.33,34 The recovery of the heart is consistently reflected by
improved LV remodeling, improved ejection fraction, and
reduced scar size.35 Similar to BMDSCs, paracrine secretome
of MSCs is presumably more important for the observed
beneficial effects on cardiac remodeling and function than
transdifferentiation of MSCs into functional cardiac cells.36

Clinical phase I/II trials confirm the safety of MSC transplan-
tation, both in AMI and ischemic cardiomyopathy.37–39 In these
trials reverse remodeling and improved regional contractility
of the infarcted area were observed. In the multicenter,
randomized cardiopoietic stem cell therapy in heart failure
(or C-CURE) trial, MSCs after differentiation toward cardiomyo-
cytes were used with the cardiogenic cocktail.40 Derived
cardiopoietic stem cells, were delivered by endomyocardial
injections guided by LV electromechanical mapping. After 6
months, patients randomized to cell therapy exhibited signifi-
cant improvement of cardiac function and reduction of adverse
ventricular remodeling compared with patients receiving
standard care. The C-CURE trial implements the paradigm of
lineage guidance in cell therapy. Cardiopoietic stem cell therapy
was found feasible and safe with signs of benefit in chronic
heart failure, meriting definitive clinical evaluation.

Application of MSCs demonstrated an improvement in
LVEF and perfusion with intracoronary infusion of these cells
in a trial conducted by Chen.37 Several imagining techniques
demonstrated that MSC from BM significantly improved LV
function. In another clinical trial38 with intravenously admin-
istered allogeneic MSC, there was no higher rate of major
adverse cardiac events and some benefits in terms of LVEF.
This trial provides decisive safety and provisional efficacy data
for allogeneic BMDSCs in post-infarction patients.

The safety of utilizing the allogeneic MSCs was confirmed
in the POSEIDON trial.41 In this early-stage study of patients
with ICM, transendocardial injection of allogeneic and
autologous MSCs without a placebo control were both
associated with low rates of treatment-emergent serious
adverse events, including immunologic reactions. In aggre-
gate, MSC injection favorably affected patient functional
capacity, quality of life, and ventricular remodeling. MSC
injection affected patient functional capacity, quality of life,
and ventricular remodeling favorably. The allogeneic MSC
transplantation proved safe and was not associated with
adverse immune response.

3.1.3. Cardiac stem cells
Another route of possible cardiac regeneration is stimulation
of endogenous repair by injected cells, through stem cell
cardiac niches activation.42 Historically, the heart has been
considered as a terminally differentiated organ without the
capacity for self regeneration. Hierlihy et al.43 described for
the first time the presence of a stem cell-like population in the
heart. In contrast to BM cells, cardiac stem cells (CSCs) isolated
from the myocardium lack expression of hematopoietic
markers, but express cardiac-specific transcription factors
such as Nkx 2.5, GATA 4, and Mef2.44 More recently, it has been
reported that the adult heart contains cell populations with
stem cell characteristics.45–49 Hosoda et al.50 indicate that the
adult heart contains a pool of resident stem cells with a high
rate of activity for differentiation to cardiomyocytes that can
regulate cardiac homeostasis and repair. Other studies51–53

suggest that cardiomyocytes have the ability to self-renew and
new cardiomyocytes may be derived from the division of pre-
existing cardiomyocytes. Senyo et al.54 revealed that cell cycle
activity during normal aging and after injury led to polyploidy
and multinucleation, but also to new diploid, mononucleate
cardiomyocytes. These data suggest that pre-existing cardi-
omyocytes are the dominant source of cardiomyocyte replace-
ment in normal mammalian myocardial homeostasis as
well as after myocardial injury. CSCs have the capacity to
differentiate into endothelial cells, smooth muscle myocytes,
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and cardiomyocytes. CSCs are activated by paracrine signals
that occur during ischemia.55 Their amount is insufficient for a
complete repair of the myocardium, but can be activated by
extracardiac delivered cells. This way stem cell niches remain
preserved, and through cell-to-cell interactions may restore
lost cellular differentiation capacity.42 Ma et al.56 have used
laser-patterned biochips to define cell-cell contact modes for
systematic study of contact-mediated cellular interactions at
the single-cell level. It allowed them to define the stem cell–
cardiomyocyte contact mode formation. Those results can be
used to determine specific cellular interactions, such as
electrical coupling, mechanical coupling or mitochondria
transfer.

In comparative studies of MSCs, cardiac (c-kit+) stem cells
and cardiosphere derived cells,57 the cardiomyogenic differ-
entiation capacity was more effective with the cardiac derived
cells than with MSCs. However, it is also necessary to
determine the potential tropic influence of stem cell secretions
or cytokines released at the site of injury and the degree of
cardio-repair that may be clinically relevant.58

Innovative stem cell therapy has also found applications in
the youngest patients. Simpson et al.59 examined the
regenerative capacity of CSCs in very young patients with
nonischemic congenital heart defects. They showed that
neonatal-derived CSCs demonstrated an increased number
of cardiac progenitor cells expressing c-kit(+), flk-1, and Islet-1.
Moreover, after transplantation into infarcted myocardium,
neonatal-derived CSCs had a significantly higher ability to
preserve myocardial function, prevent adverse remodeling,
and enhance blood vessel preservation and/or formation
when compared with adult-derived CSCs. Besides, neonatal-
derived CDCs were more cardiomyogenic than adult-derived
CSCs when cocultured with neonatal cardiomyocytes and
displayed enhanced angiogenic function compared with
adult-derived CSCs. This has important implications in the
potential use of CSCs in future clinical trials.

3.1.4. Induced pluripotent stem cells
Because the regeneration and repair of the adult heart after MI
are rather limited, attempts to force pluripotent stem cells
(PSCs) into cardiomyogenic differentiation before intracardiac
transplantation are currently being undertaken. Induced PSCs
(iPSCs, also known as iPS cells) are a type of PSCs that can be
generated directly from adult cells. The iPSC technology was
pioneered by Shinya Yamanaka, who showed in 2006 that
the introduction of four specific genes could convert adult
cells to PSCs.60 iPSCs can be generated by cell reprogramming
technology from autologous fibroblasts and thus are not
afflicted with ethical concerns.61,62 Kawamura et al.63 demon-
strated therapeutic efficacy of human iPS-derived cardiomyo-
cyte sheets for regenerative therapy in a porcine model of
ischemic cardiomyopathy. In this study, cell transplantation
improved cardiac performance significantly and attenuated
LV remodeling. Moreover, cardiac fibroblasts can be converted
directly into cardiac myocytes using advanced cell reprogram-
ming technology.64

Induced PSCs also offer a unique tool for studying diseases
and developing customized drug therapies in vitro. Under-
standing the basis for differential responses to drug therapies
remains a challenge despite advances in genetics and
genomics. Terrenoire et al.65 used iPSCs differentiated into
cardiomyocytes (iPSCs-CMs) to study the physiological basis
for arrhythmias in a four-year-old child with long QT
syndrome (LQTS). Using voltage clamp analyses of iPSCs-
CMs derived from the affected child and his parents, the
researchers determined that his arrhythmias were caused by
the SCN5A mutation. Those results show promise for using
in vitro iPSC techniques in the development of individualized
drug therapies for patients with LQTS.

Recent evidence has shown that human iPSC-CMs offer a
powerful tool to investigate disease mechanisms and to
perform patient-specific drug screening. Lee et al.66 designed
a fluorescent imaging platform using LED illumination to
measure the electrical activity of the cells. The new method
can be readily applied for the study of arrhythmia mecha-
nisms, testing new drug treatments and therapies to repair
damaged heart muscle.

New reprogramming technologies open very promising
avenues for cell-based therapies in cardiovascular medicine.
However, further studies in large-animal models are needed,
and important practical hurdles have to be overcome before
translation of this approach into clinical practice.

3.1.5. Cells from other sources
Adipose derived stem cells (ADCs) have been used in the
APOLLO trial in patients after AMI in the first human
randomized clinical trial with intracoronary administration.67

Within 36 h of the MI and no longer than 24 h after undergoing
percutaneous coronary intervention, patients received an
injection of either 20 million ADCs (n = 10) or a placebo
(n = 4). The percentage of LV infarcted was reduced by 52% in
the ADC-treated patients, as opposed to no change in the
placebo-treated AMI patients. There was observed a significant
improvement of the perfusion defect in ADC-treated at the 6-
month follow-up as compared to a deterioration in the placebo
group. LVEF improved by 4% as compared to a deterioration of
1.7% in the placebo group.68

A new approach in stem cell therapy is cell mobilization.
Trials were conducted with the administration of granulocyte
colony-stimulating factor (G-CSF), but results have been less
encouraging. Only in the FIRSTLINE-AMI trial,69 the RIGENERA
study,70 and in the study by Takano et al.,71 significant
improvements were observed, other trials showed negative
findings. In some trials a combination of G-CSF mobilization
and intracoronary injection of peripheral blood progenitor
cells were used. In the MAGIC trials72 no differences in LVEF
were observed, merely an increase in the instant restenosis
rate. However, after the design was changed and drug-eluting
stents were used, the MAGIC 3-DES trial found positive results
of LVEF.73

Although there is large variability of hemodynamic data
after cell therapy, there is moderate improvement of
cardiac performance by stem cell therapy that is more
quantitatively effective than therapeutic interventions and
pharmacotherapy.17

Skeletal myoblasts have been studied in ischemic heart
diseases. Transepicardial injection of skeletal myoblast in
MAGIC trial74 reported no changes in global or regional
contractility. Nonetheless, in the high-dose group reduction
in LV end-diastolic and end-systolic volumes were observed.
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Unfortunately, some incidences of ventricular arrhythmias
were observed. Results obtained by Dib et al.75 suggest that
autologous myoblast transplantation offers a potential thera-
peutic treatment for end-stage heart disease.

The scientists from the Max Planck Institute for Heart and
Lung Research in Bad Nauheim have identified a key molecule
that plays a main role in regulating the function of stem cells in
the heart. Using an animal model (the zebrafish), they
investigated the effects of a defective switch on cardiac
development. They have identified Ajuba, a transcription
factor from the group of LIM proteins (named after their
discovery in the proteins Lin11, Isl-1 and Mec-376) as a crucial
regulator of the second heart field progenitor cell specification
and expansion. Understanding regulation of cardiac develop-
ment, we will be able to consider therapeutic approaches –

production of replacement cells from embryonic or stimulate
stem cell activity by silencing Ajuba in the damaged heart and
so cause the heart to regenerate itself.77

4. Discussion

The final goal of CSC therapy is the repair of the damaged
myocardium and the restoration of cardiac function. Results
of clinical trials have been reported as unusually promising,
including cardiomyogenesis, neovascularization, and para-
crine effect on injured myocardium. However, we have to
remember that the loss of cardiomyocytes after an AMI is
about 1 billion cells. Transplanted cells must be supplied
together with cardiomyocytes, and the environmental signals
which guide stem cells to the cardiac lineage or to the
secretion of paracrine factors might be absent in damaged
tissue.58

From a clinical point of view, an ideal cell source for
cardiovascular regeneration should be easy to access, should
have cardioprotective, cardiomyogenic, and angiogenic po-
tential independent from patient age and cardiovascular risk
factors, and should survive in harsh environments.

The results obtained during the last few years are not
consistent for a few reasons. These well-designed randomized
clinical trials generated very mixed results.23,78–80 The diver-
gences are attributed to differences in cell preparations, the
large number of stem cell types under investigation in
different clinical settings, timing, methods of cell administra-
tion and characteristics of patients.

Patient selection before conducting clinical trial must take
into account the pathophysiologic basis of the disease and
baseline characteristics. Each disease presents its own set of
problems and complexities, and subsets of patients within
diseases present differing challenges. Patients with larger AMI,
much depressed baseline LVEF and stroke volumes seem to
benefit the most after stem cell treatment, rather than patients
with microvascular obstruction.58

Survival and engraftment of stem cells are the most
important challenges for stem cells therapy, especially after
a MI, where an enormous loss of cardiomyocytes is needed to
be replaced. Using various in vivo imaging techniques revealed
that only a limited number of cells engrafted and most cells
died shortly after transplantation. It has been shown that
more than 90% of injected cells during cell therapy die by
apoptosis 24 h after transplantation.81 Hence, when they are
transplanted in an ischemia, hypoxia, and proapoptotic niche,
most stem cells cannot survive.82 Therefore, optimization of
cell retention after injection and survival seem to be para-
mount to further define the optimal dose of cells to transplant.
Currently to reduce this loss, large amount of cells must be
injected. A dosage effect has largely been reported.83Moreover,
many studies have focused on strategies to optimize migration
of stem cells across injured myocardial tissue. Many agents,
such as proteases, adhesion molecules, and integrin take part
in regulating this migration and modulation of the connective
tissue microenvironment to improve stem cells engraft-
ment.84–87 Specifically, cell-tracking studies have found that
myocardial engraftment is less than 10% within 48 h irre-
spective of cell type, the number of cells implanted, and
delivery route.88 PET showed that only 1.3%–2.6% of the labeled
stem cells migrated to the myocardium 2 h after injection,
while the majority of the cells moved to the tissue outside of
the heart muscle, including the liver, spleen, lung, bladder, and
brain.89 It seems that cells being cultured in vitro and
administered in several doses at different times turned out
to be indispensable.90 Alternatively, combinations of two cell
types with documented positive interactions might be a novel
therapeutic strategy, which was proven in a porcine model of
MI for the combination of human CSCs with human MSCs.91

The combination of the two cell types turns out to be more
effective at reducing infarct size and restoring cardiac function
than either cell type alone. Other options may be transplanta-
tion of cell-free matrices being the supplier of cardiopoietic
factors. Their controlled release may be deployed to enhance
intracardiac paracrine effects and to activate the intrinsic
regeneration capacity of the heart.

5. Conclusions

Over the last decade, cardiac cell therapy has been widely
studied as a revolutionary approach to promote the non-
pharmacological replacement of lost myocardium. Evidence
obtained from human clinical trials in CVDs demonstrates the
important role of stem cells. Despite diverse results, the data
suggest that applied procedures are safe and feasible.
Therefore, carefully designed clinical trials are needed to
evaluate the potential of various SC sources to define the
limitations in production, delivery, and clinical benefit.
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